3.86 \(\int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^5} \, dx\)

Optimal. Leaf size=143 \[ \frac {8 \tan (c+d x)}{315 d \left (a^5 \sec (c+d x)+a^5\right )}+\frac {8 \tan (c+d x)}{315 a d \left (a^2 \sec (c+d x)+a^2\right )^2}+\frac {4 \tan (c+d x)}{105 a^2 d (a \sec (c+d x)+a)^3}+\frac {4 \tan (c+d x)}{63 a d (a \sec (c+d x)+a)^4}+\frac {\tan (c+d x)}{9 d (a \sec (c+d x)+a)^5} \]

[Out]

1/9*tan(d*x+c)/d/(a+a*sec(d*x+c))^5+4/63*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^4+4/105*tan(d*x+c)/a^2/d/(a+a*sec(d*x
+c))^3+8/315*tan(d*x+c)/a/d/(a^2+a^2*sec(d*x+c))^2+8/315*tan(d*x+c)/d/(a^5+a^5*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3796, 3794} \[ \frac {8 \tan (c+d x)}{315 d \left (a^5 \sec (c+d x)+a^5\right )}+\frac {8 \tan (c+d x)}{315 a d \left (a^2 \sec (c+d x)+a^2\right )^2}+\frac {4 \tan (c+d x)}{105 a^2 d (a \sec (c+d x)+a)^3}+\frac {4 \tan (c+d x)}{63 a d (a \sec (c+d x)+a)^4}+\frac {\tan (c+d x)}{9 d (a \sec (c+d x)+a)^5} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + a*Sec[c + d*x])^5,x]

[Out]

Tan[c + d*x]/(9*d*(a + a*Sec[c + d*x])^5) + (4*Tan[c + d*x])/(63*a*d*(a + a*Sec[c + d*x])^4) + (4*Tan[c + d*x]
)/(105*a^2*d*(a + a*Sec[c + d*x])^3) + (8*Tan[c + d*x])/(315*a*d*(a^2 + a^2*Sec[c + d*x])^2) + (8*Tan[c + d*x]
)/(315*d*(a^5 + a^5*Sec[c + d*x]))

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3796

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a
+ b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^5} \, dx &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}+\frac {4 \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx}{9 a}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}+\frac {4 \tan (c+d x)}{63 a d (a+a \sec (c+d x))^4}+\frac {4 \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx}{21 a^2}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}+\frac {4 \tan (c+d x)}{63 a d (a+a \sec (c+d x))^4}+\frac {4 \tan (c+d x)}{105 a^2 d (a+a \sec (c+d x))^3}+\frac {8 \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{105 a^3}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}+\frac {4 \tan (c+d x)}{63 a d (a+a \sec (c+d x))^4}+\frac {4 \tan (c+d x)}{105 a^2 d (a+a \sec (c+d x))^3}+\frac {8 \tan (c+d x)}{315 a^3 d (a+a \sec (c+d x))^2}+\frac {8 \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{315 a^4}\\ &=\frac {\tan (c+d x)}{9 d (a+a \sec (c+d x))^5}+\frac {4 \tan (c+d x)}{63 a d (a+a \sec (c+d x))^4}+\frac {4 \tan (c+d x)}{105 a^2 d (a+a \sec (c+d x))^3}+\frac {8 \tan (c+d x)}{315 a^3 d (a+a \sec (c+d x))^2}+\frac {8 \tan (c+d x)}{315 d \left (a^5+a^5 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 138, normalized size = 0.97 \[ \frac {\sec \left (\frac {c}{2}\right ) \left (-5040 \sin \left (c+\frac {d x}{2}\right )+3612 \sin \left (c+\frac {3 d x}{2}\right )-3360 \sin \left (2 c+\frac {3 d x}{2}\right )+1728 \sin \left (2 c+\frac {5 d x}{2}\right )-1260 \sin \left (3 c+\frac {5 d x}{2}\right )+432 \sin \left (3 c+\frac {7 d x}{2}\right )-315 \sin \left (4 c+\frac {7 d x}{2}\right )+83 \sin \left (4 c+\frac {9 d x}{2}\right )+5418 \sin \left (\frac {d x}{2}\right )\right ) \sec ^9\left (\frac {1}{2} (c+d x)\right )}{80640 a^5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + a*Sec[c + d*x])^5,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^9*(5418*Sin[(d*x)/2] - 5040*Sin[c + (d*x)/2] + 3612*Sin[c + (3*d*x)/2] - 3360*Sin[2
*c + (3*d*x)/2] + 1728*Sin[2*c + (5*d*x)/2] - 1260*Sin[3*c + (5*d*x)/2] + 432*Sin[3*c + (7*d*x)/2] - 315*Sin[4
*c + (7*d*x)/2] + 83*Sin[4*c + (9*d*x)/2]))/(80640*a^5*d)

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 123, normalized size = 0.86 \[ \frac {{\left (83 \, \cos \left (d x + c\right )^{4} + 100 \, \cos \left (d x + c\right )^{3} + 84 \, \cos \left (d x + c\right )^{2} + 40 \, \cos \left (d x + c\right ) + 8\right )} \sin \left (d x + c\right )}{315 \, {\left (a^{5} d \cos \left (d x + c\right )^{5} + 5 \, a^{5} d \cos \left (d x + c\right )^{4} + 10 \, a^{5} d \cos \left (d x + c\right )^{3} + 10 \, a^{5} d \cos \left (d x + c\right )^{2} + 5 \, a^{5} d \cos \left (d x + c\right ) + a^{5} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))^5,x, algorithm="fricas")

[Out]

1/315*(83*cos(d*x + c)^4 + 100*cos(d*x + c)^3 + 84*cos(d*x + c)^2 + 40*cos(d*x + c) + 8)*sin(d*x + c)/(a^5*d*c
os(d*x + c)^5 + 5*a^5*d*cos(d*x + c)^4 + 10*a^5*d*cos(d*x + c)^3 + 10*a^5*d*cos(d*x + c)^2 + 5*a^5*d*cos(d*x +
 c) + a^5*d)

________________________________________________________________________________________

giac [A]  time = 0.82, size = 72, normalized size = 0.50 \[ \frac {35 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 180 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 378 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 420 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 315 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{5040 \, a^{5} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))^5,x, algorithm="giac")

[Out]

1/5040*(35*tan(1/2*d*x + 1/2*c)^9 - 180*tan(1/2*d*x + 1/2*c)^7 + 378*tan(1/2*d*x + 1/2*c)^5 - 420*tan(1/2*d*x
+ 1/2*c)^3 + 315*tan(1/2*d*x + 1/2*c))/(a^5*d)

________________________________________________________________________________________

maple [A]  time = 0.39, size = 71, normalized size = 0.50 \[ \frac {\frac {\left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{9}-\frac {4 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {6 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{16 d \,a^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+a*sec(d*x+c))^5,x)

[Out]

1/16/d/a^5*(1/9*tan(1/2*d*x+1/2*c)^9-4/7*tan(1/2*d*x+1/2*c)^7+6/5*tan(1/2*d*x+1/2*c)^5-4/3*tan(1/2*d*x+1/2*c)^
3+tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 107, normalized size = 0.75 \[ \frac {\frac {315 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {420 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {378 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {180 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {35 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}}{5040 \, a^{5} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))^5,x, algorithm="maxima")

[Out]

1/5040*(315*sin(d*x + c)/(cos(d*x + c) + 1) - 420*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 378*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5 - 180*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 35*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)/(a^5*d)

________________________________________________________________________________________

mupad [B]  time = 0.76, size = 127, normalized size = 0.89 \[ \frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (315\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-420\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+378\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-180\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+35\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\right )}{5040\,a^5\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)*(a + a/cos(c + d*x))^5),x)

[Out]

(sin(c/2 + (d*x)/2)*(315*cos(c/2 + (d*x)/2)^8 + 35*sin(c/2 + (d*x)/2)^8 - 180*cos(c/2 + (d*x)/2)^2*sin(c/2 + (
d*x)/2)^6 + 378*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^4 - 420*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d*x)/2)^2))/(5
040*a^5*d*cos(c/2 + (d*x)/2)^9)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sec {\left (c + d x \right )}}{\sec ^{5}{\left (c + d x \right )} + 5 \sec ^{4}{\left (c + d x \right )} + 10 \sec ^{3}{\left (c + d x \right )} + 10 \sec ^{2}{\left (c + d x \right )} + 5 \sec {\left (c + d x \right )} + 1}\, dx}{a^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sec(d*x+c))**5,x)

[Out]

Integral(sec(c + d*x)/(sec(c + d*x)**5 + 5*sec(c + d*x)**4 + 10*sec(c + d*x)**3 + 10*sec(c + d*x)**2 + 5*sec(c
 + d*x) + 1), x)/a**5

________________________________________________________________________________________